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ABSTRACT

We consider a steady-state (but transient) situation in which a warm dense aggregate is a two-temperature system with equilibrium electrons at
temperature Te, ions at Ti, and Te ≠ Ti. Such states are achievable by pump–probe experiments. For warm dense hydrogen in such a two-
temperature situation, we investigate nuclear quantum effects (NQEs) on structure and thermodynamic properties, thereby delineating the
limitations of ordinary ab initio molecular dynamics. We use path integral molecular dynamics (PIMD) simulations driven by orbital-free
density functional theory (OFDFT) calculations with state-of-the-art noninteracting free-energy and exchange-correlation functionals for
the explicit temperature dependence. We calibrate the OFDFT calculations against conventional (explicit orbitals) Kohn–Sham DFT. We find
that when the ratio of the ionic thermal de Broglie wavelength to the mean interionic distance is larger than about 0.30, the ionic radial
distribution function is meaningfully affected by the inclusion of NQEs. Moreover, NQEs induce a substantial increase in both the ionic and
electronic pressures. This confirms the importance ofNQEs for highly accurate equation-of-state data onhighly driven hydrogen. ForTe> 20 kK,
increasing Te in the warm dense hydrogen has slight effects on the ionic radial distribution function and equation of state in the range of densities
considered. In addition, we confirm that compared with thermostatted ring-polymer molecular dynamics, the primitive PIMD algorithm
overestimates electronic pressures, a consequence of the overly localized ionic description from the primitive scheme.

©2020Author(s). All article content, exceptwhere otherwisenoted, is licensedunderaCreativeCommonsAttribution (CCBY) license (http://creativecommons.org/
licenses/by/4.0/). https://doi.org/10.1063/5.0025164

I. INTRODUCTION

Laboratory advances have created new avenues of investigation
into the warm dense matter (WDM) condensed-phase-state regime.
Dynamic compression methods1–5 and high-power laser ablation6–8

allow the exploration of WDM over wide temperature–pressure
ranges. Typical experimental creation of WDM deposits energy
predominantly into either electrons or ions on time scales that are
generally of the order of nanoseconds or shorter. In fact, for laser
excitation, pulse durations can be in the femtosecond time domain.
Concurrent heating and measurement of the electron subsystem

temperature during 25 fs x-ray pulses have been reported.9 WDM
produced by dynamic compression is usually in short-lived, spatially
inhomogeneous states, and therefore detailed knowledge of such
nonequilibrium (transient) WDM states is important.10–13

An interesting and important category is the two-temperature
case: electrons at temperature Te and ions at Ti, with Te ≠ Ti. Over 40
years ago, Anisimov et al.14 proposed a two-temperature model for
the interpretation of laser-pulse-excited electron emission from a
metal surface. Hohlfeld et al.15 proposed three regimes to describe the
response of a system to subpicosecond laser pulses. The first regime is
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characterized by ballistic transport of the excited electrons, which
lasts until electron–electron scattering leads to a Te that, in the second
regime, is not equal to Ti. In the third regime, ion–electron coupling
results in an eventual thermal equilibrium state of the whole system,
described by a single temperature, Te � Ti. Meanwhile, Murillo
et al.16,17 predicted that heating the electrons creates an instantaneous
response that leads to spontaneous ionic heating before thermal
equilibration in the plasma regime.

A particularly pertinent description can be found in Ref. 18.
Those authors considered “. . . ions at a temperature Ti much less
than the measured electron temperature Te of 10 eV” treated by
orbital-free density functional theory (OFDFT) driving ab initio
molecular dynamics (AIMD)19–22 at “. . .different electronic and
ionic temperatures. Such simulations correspond to separate
equilibrium states of ions and electrons, but to an out-of-
equilibrium state of the whole system. Since the electron system
is treated in the simulations within density functional theory at Te,
the ion–electron system is frozen in the out-of-equilibrium state of
decoupled temperatures.”Other examples of the use of models with
differing ion and electron temperatures to interpret the equation of
state, optical, and transport properties of WDM include those in
Refs. 23–27.

Here, we use the same two-temperature approach to treat
hydrogen, but with far more advanced density functional ap-
proximations (see below). The majority abundance of hydrogen in
the universe makes precise knowledge of its behavior inWDM state
conditions crucial for modeling the interiors of giant planets.28 Its
nuclear properties make hydrogen crucial for inertial confinement
fusion experiments.29,30 A free-electron x-ray laser pump–probe
measurement of dense cryogenic hydrogen is an important
example.31–33 In those experiments, a pair of 300 fs, 92 eV pulses
were separated by a time delay 0 < Δt ≤ 5 ps. Depending on the
pump intensity (19 TW/cm2 or 27 TW/cm2), from roughlyΔt� 1 ps
onward to 5 ps, the electron temperature Te (from hydrodynamic
analysis) was about 1.75 eV, while the ion temperature Tiwas about
0.35–0.4 eV. The Spitzer equilibration time for the two tempera-
tures to stabilize was calculated to be about 0.9 ps, a value consistent
with observation. Several of the conclusions were confirmed by
AIMD simulations driven by free-energy DFT.31,32

In AIMD, Born–Oppenheimer forces from DFT drive classical
point ions. The ionic configuration space is then sampled with
molecular dynamics. Applications to finite-T systems should use free-
energy DFT calculations,34 but it is not unusual to see ground-state
approximate functionals used with finite-T densities. Such was the
case in Refs. 31 and 32. Although by now the approach has been
applied extensively, there are three substantial challenges to such free-
energy-DFT-based AIMD simulations that are highly relevant to
understanding two-temperature hydrogen.

The most important of these three challenges concerns nu-
clear quantum effects (NQEs) on structure and thermodynamic
properties.35 NQEs are particularly significant for low-mass ele-
ments such as hydrogen and its isotopes.36 An especially significant
issue is the variation of NQEs as a system of low-mass ions
traverses a wide range of state conditions. Several studies have been
conducted using path integral techniques for the description of
warm dense hydrogen or deuterium, with path integral molecular
dynamics (PIMD) and PIMD-centroid approaches being frequent

choices.37–46 As reported in the literature,37–39 NQEs have sig-
nificant impacts on phase transitions between solid molecular
hydrogen at megabar pressures, as well as the melting behavior of
dense hydrogen.41,42 Furthermore, NQEs play an important role in
the accurate description of the electronic structure of dense hy-
drogen. With the inclusion of the quantum nature of ions, the
metallization, dissociation, and transport properties of hydrogen
at high pressures exhibit strikingly different behaviors fromwhat is
found in conventional calculations with classical ions.36,43–48

Those differences cannot be described sufficiently even with the
quasiharmonic approximation.37

Second, and more generically, the cost of standard Kohn–
Sham (KS) DFT49 calculations scales with the cube of the number of
occupied KS orbitals. As the temperature increases, the compu-
tational cost of conventional KS-DFT inexorably becomes pro-
hibitive. A promising tool for material modeling at high
temperatures is therefore the orbital-free form of KS theory
(OFDFT), because of its linear scaling of computational cost with
system size. An approximately linear scaling method that also does
not depend on the system state to achieve sparsity is the “extended
first-principles MD” scheme.50 This replaces high-lying, com-
paratively low-occupation KS states with plane waves, thereby
sacrificing orthogonality but retaining atomic shell structure. It has
been used to attempt to delineate the validity of OFDFT, but only in
the context of the outmoded and fundamentally flawed
Thomas–Fermi (TF) noninteracting free-energy functional and the
ground-state local spin density approximation for the exchange-
correlation (XC) free energy.51 By contrast, some state-of-the-art
orbital-free noninteracting free-energy functionals have been de-
veloped recently and have been applied successfully to WDM.52–54

These substantially improve the achievable accuracy of OFDFT
calculations for WDM and hence go well beyond the TF ap-
proximation that was used, for example, in Ref. 18.

Third, as remarked above, the majority of finite-T AIMD
calculations have used ground-state XC functionals evaluated with
finite-T densities. This “ground-state approximation” is now
known to introduce nontrivial errors in both the equation of state
and the principal Hugoniot.55–58 XC thermal effects need to be
included in the WDM regime by use of genuine XC free-energy
functionals.

The advance of OFDFT approximations for both noninteracting
and XC free energies provides the opportunity to explore whether
NQEs can be treated adequately by path integral simulations driven by
OFDFT calculations. If successful, this would open new possibilities for
large-scale detailed simulations of important WDM systems. Here, we
investigate precisely that potential payoff. We study the structure and
thermodynamic properties of two-temperature warm dense hydrogen
using PIMD simulations for protons driven by electronic forces ob-
tained from finite-temperature OFDFT. The effects of the OFDFT
functional approximation are assessed by comparison with conven-
tional KS-DFT calculations. With that comparison in hand, we then
focus on the physics of the hydrogen problemby systematic assessment
of NQEs. This is done by comparisons between orbital-free Born–
Oppenheimer molecular dynamics (which for brevity we denote as
OFMD) simulations and orbital-free-driven path integral PIMD
(PI-OFMD) simulations. To avoid the well-known and much-studied
complications of themolecularH2 to atomicH liquid–liquid transition,
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we consider ion temperatures and densities that, from the best available
evidence,41 should, for the most part, correspond to the atomic liquid.
Details are given below.

In this paper, we first briefly describe the PIMD methods for
protons and finite-temperature OFDFT methods for electrons in
Sec. II. Then, in Sec. III, we describe the computational details for
two-temperature warm dense hydrogen. The results and a dis-
cussion are presented in Sec. IV in which the calibrating com-
parisons with other methods, NQEs on radial distribution
functions, and equation of state are discussed in detail. Finally, we
give a brief conclusion in Sec. V.

II. METHODS

A. Path integral molecular dynamics for protons

This subsection provides a brief description of the PIMD
treatment for protons. Note that the temperatures under consid-
eration in this work are higher than the quantum degeneracy
temperature,59 and hence proton exchange effects are neglected in
the following formulation. The canonical partition function of N
identical ions of mass m at inverse temperature β � 1/kBTi (kB is
the Boltzmann constant) takes the well-known discretized path
integral form60,61

ZP � mP
2πβZ2

( )3NP/2 ∫∏
P

s�1
∏
N

i�1
dr(s)i

3 exp −β�
P

s�1
�
N

i�1
1
2
mω2

P(r(s)i − r(s+1)i )2 + 1
PV({ri}(s))⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦⎧⎪⎨⎪⎩ ⎫⎪⎬⎪⎭,

(1)

where P is the number of discretized points, ωP � ��P√
/βZ, and

V({ri}(s)) is the potential energy of the system at the imaginary time
slice s for system configuration {ri}. For the two-temperature system,
V is conventionally noted as the electronic free energy, although the
interionic potential is included.

In Eq. (1), the canonical partition function of a quantum system
has been expressed as a configurational integral of Boltzmann-
weighted continuous paths. Those closed paths are discretized
through the Trotter approximation62 into P “beads” circularly
connected via harmonic springs, Thus, as is well known, anN-particle
quantum system can bemade approximately isomorphic to a classical
system consisting of N ring polymers, in which each quantum
particle is mapped onto a closed, flexible polymer of P beads.63,64

The approximation becomes a true isomorphism in the limit
P→∞, i.e., Z � limP→∞ZP .

To sample the configuration space of the classical polymer
system using MD simulations, and thereby obtain the thermody-
namic properties of the isomorphic quantum system, an effective
Hamiltonian is defined by

Heff ��
P

s�1
�
N

i�1
p(s)2i

2m′ + Veff , (2)

where m′ is the fictitious mass that determines the efficiency of
sampling of the polymer configurations, p(s)i is the fictitious mo-
mentum conjugate to the position r(s)i , and the effective potential is

Veff ��
P

s�1
�
N

i�1
1
2
mω2

P r(s)i − r(s+1)i( )2 + 1
P �

P

s�1
V {ri}(s)( ). (3)

The equations of motion then follow:

m′r̈(s)i � −mω2
P 2r(s)i − r(s+1)i − r(s−1)i( )− 1

P
zV {ri}(s)( )

zr(s)i

. (4)

The foregoing formulation comprises the primitive PIMD
algorithm. Because the harmonic confinement coupling grows as��P√

, this algorithm is known to have practical limitationswith respect
to configuration space sampling.65 Craig and Manolopoulos66 ex-
tended the algorithm to ring-polymer molecular dynamics (RPMD)
for simulating the fictitious quantum dynamics approximately. In
RPMD, the fictitious bead mass m′ is chosen to be the physical mass
m, and the harmonic bead-coupling and potential-energy terms are
taken to beP times larger than their counterparts in Eq. (4). It can be
shown that these choices do not have any impact on the generation of
thermodynamic equilibrium average quantities.67 Thus, we adopt
thermostatted RPMD (TRPMD)68 with normal mode transforma-
tion69 for the bead coordinates to perform the PIMD simulations. At
the end, we give a brief comparison of results from the primitive
PIMD algorithm.

The ensemble averages for thermodynamic quantities can be
derived from the path integral representation of the partition function
in Eq. (1). In particular, the thermodynamic estimator for the total
free energy is contributed by the quantum kinetic energy estimator61

ϵkin � 3
2
NPkBTi −�

P

s�1
�
N

i�1
1
2
mω2

P r(s)i − r(s+1)i( )2, (5)

the potential-energy (electronic free-energy) estimator

ϵpot � 1
P �

P

s�1
V {ri}(s)( ), (6)

and the entropy contribution from the nuclear configurations. Here,
we neglect the difference in the ionic configuration entropy between
the classical and quantum treatment of ions.

The thermodynamic estimator for the pressure p is

p � NPkBTi

V
−

1
3V
�
P

s�1
�
N

i�1
⎡⎣mω2

P(r(s)i − r(s+1)i )2

+ 1
Pr(s)i · zV({ri}(s))

zr(s)i

⎤⎦, (7)

where V is the system volume. The first and second terms are the
contributions of the ionic quantum motions to the total pressure,
while the third term is the electronic contribution (in some of the
literature, the electron pressure is known as the excess pressure).
Averaging these estimators along the MD trajectory yields the cor-
responding observable thermodynamic quantities.

B. Finite-temperature OFDFT for electrons

In ab initio PIMD, the interpolymeric interaction V({ri}(s)) at
the imaginary-time slice s has two parts, namely, the ion–ion elec-
trostatic interaction and the electron–ion interaction energy. The
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latter contribution can be calculated via free-energy DFT.34 In this,
the electronic free energy is obtained by minimizing the grand ca-
nonical potential with respect to the electron density n(r, Te). The
grand canonical potential has the form52

Ω[n] � F[n] + ∫ dr v(r)− μ( )n(r), (8)

where v(r) is the external potential on the electrons corresponding to
electron density n and μ is the chemical potential. The free-energy
functional F[n] is composed of the noninteracting free energy Fs[n],
the classical Coulomb repulsion energy (i.e., Hartree energy) FH[n],
and the XC free energy Fxc[n],

F[n] � Fs[n] + FH[n] + Fxc[n]. (9)

The Hartree energy has the same form as in zero-temperature DFT,

FH[n] � 1
2
∫ n(r, Te)n(r′, Te)

|r− r′| dr dr′. (10)

The noninteracting free energy is

Fs[n] � Ts[n]−TeSs[n], (11)

where Ts[n] and Ss[n] are the noninteracting kinetic free energy and
entropy, respectively. The XC free energy is the excess electron–
electron interaction energy with respect to theHartree energy plus the
differences in the kinetic free energy and entropy between the fully
interacting system and the noninteracting reference system, to wit,

Fxc[n] � (T[n]−Ts[n])−Te(S[n]− Ss[n]) + (Uee −FH[n]), (12)

where Uee[n] is the full electron–electron Coulomb interaction free
energy.

In conventional KS-DFT, a sophisticated scheme exploits the
one-electron orbitals of the noninteracting system to construct the
electron density of the real system and thereby the total free energy.
The advantage of conventional KS-DFT is that the noninteracting
free-energy functionals Ts[n] and TeSs[n] can be constructed exactly
from the one-electron orbitals and their Fermi–Dirac occupations,
thereby giving an explicit Euler equation once a suitable approximate
Fxc is provided.

In contrast to conventional KS-DFT, in OFDFT, the nonin-
teracting functionals Ts[n] and Ss[n] are formulated directly in terms
of the electron density rather than the KS orbitals. Doing so requires
approximations. Given these, minimization of the grand canonical
potential in Eq. (8) with respect to the electron density n(r, Te) gives
the Euler–Lagrange equation

δTs[n]
δn

−Te
δSs[n]
δn

+ δFH[n]
δn

+ δFxc[n]
δn

� μ− v(r). (13)

The computational cost of solving this equation scales linearly with
system size and is essentially temperature-independent. The chal-
lenge is that both accurate noninteracting and XC free-energy
functionals are essential ingredients for successful application of
OFDFT to WDM.

Recently, a framework for generating constraint-based non-
empirical orbital-free generalized gradient approximations for the
noninteracting free-energy functional has been explored,52 and two
distinct noninteracting free-energy functionals, VT84F53 and
LKTF,54,70 have been developed. More or less concurrently, several
explicitly temperature-dependent XC functionals have also been

proposed at both the local density approximation (LDA) level of
refinement71,72 and the generalized gradient approximation (GGA)
level.73 They have been shown to have significant thermal effects on
equations of state, principal Hugoniots, and optical properties of
WDM.56,57 The opportunity opened by these functionals that is
explored here is to broaden both the scope and the accuracy of
ab initio PIMD calculations of NQEs.

III. COMPUTATIONAL DETAILS

To investigate the impact ofNQEs on thematerial properties of a
sensitive two-temperature system, we have performed extensive
PI-OFMD simulations of two-temperature warm dense hydrogen.
The electron temperatures studied were Te � 20 kK, 50 kK, and 100
kK. The densities and ion temperatures were specified in terms of a
dimensionless scale parameter α≔ λ/2rs based on the ionic thermal de
Broglie wavelength λ � h/(2πmkBTi)1/2 and the ionic Wigner–Seitz
radius rs � (3V/4πN)1/3, where h is the Planck constant,m is the ionic
mass, Ti is the ion temperature, and V is the system volume. The
parameter α is the ratio of the effective quantum size of the ions to
their mean separation, and thus it provides a measure of the degree of
ionic quantum nature. The densities, ion temperatures, and α values
used are displayed in Fig. 1. For the density of 1 g/cm3, we chose
Ti� 300K, 1000K, and 5000K, corresponding to α� 0.681, 0.373, and
0.167, respectively. At 2.5 g/cm3, we used Ti � 553 K, 1845 K, and
9204 K, respectively, and at 5 g/cm3, 879 K, 2929 K, and 14 610 K,
respectively.

Thephase diagramof the real physical system is, of course, at local
thermodynamical equilibrium, Ti�Te. This phase diagram therefore
provides only limited context for these α choices. At Ti � 300 K and
the lower densities chosen, the equation of state that we find for the
nonequilibrium (two-temperature) system gives pressures for which
the equilibrium physical system is predicted to be in amolecular liquid

FIG. 1. The state points of the density and ion temperature used in the present
simulations. The parameter α takes values of 0.167, 0.373, and 0.681, correspond-
ing to the three curves from top to bottom, respectively. The densities of these state
points are 1 g/cm3, 2.5 g/cm3, and 5 g/cm3, respectively.
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state41,43 or amolecular solid.74 This distinction from the results of the
equilibrium calculations does not persist at the higher temperatures.

The PIMD simulations used the i-PI code75 combined with a
locally modified version of the PROFESS package76,77 for OFDFT
calculations. In terms of Eq. (4), the discretized Trotter beads run on
the potential surface generated by the harmonic interaction between
the neighboring beads and the interpolymeric interaction calculated
by OFDFT. The accurately parametrized finite-temperature local
density XC free-energy functional KSDT71 was used. (Use of the
corrKSDT LDA functional would not alter the results for the
state conditions studied.78) The nonempirical constraint-based
generalized-gradient-approximation (GGA) noninteracting free-
energy functional LKTF54 was used. This is the finite-temperature
extension of the noninteracting kinetic energy functional LKT.70

LKT, in turn, is specifically designed to meet rigorous constraints
when used with pseudopotentials, as is the case here. For comparative
purposes, we also used VT84F,53 an earlier nonempirical constraint-
based noninteracting free-energy approximation.

We used a local pseudopotential (LPP) for all of the OFDFT
calculations. Details regarding this can be found in Ref. 52. For
comparison, conventional Kohn–Sham AIMD (KSMD) calculations
were done with that same LPP unless otherwise noted. In the OFDFT
calculations with PROFESS, the numerical grid for real-space inte-
grations was set to 643 643 64 to ensure free-energy and pressure
convergence.

Periodic supercells including 128–250 atoms were employed,
depending on the bulk density, and the body-centered cubic con-
figuration was used as the starting ionic structure for all the MD
simulations, both conventional KSMD and OFMD, in this study.

In PIMD, the Trotter bead number was P � 16. AIMD with
classical ions but with the same algorithmic and code structure was
achieved by setting P � 1. The stochastic path integral Langevin
equation thermostat was used to improve the sampling efficiency. See
Ref. 79 for details. After equilibration of 5000 MD steps, 15 000
configurations with time steps of 0.2 fs–0.3 fs were generated for
taking the thermodynamical averages.

For comparison with conventional KSMD, we performed
simulations using the Quantum-ESPRESSO package.80 To achieve
consistency of comparison with the orbital-free calculations, the
KSDT XC free-energy functional was used. The projector augmented
wave procedure was employed with a 120 Ry plane-wave energy
cutoff. A sufficient number of energy bands were considered in order
to make the highest occupied band energy higher than the chemical
potential by at least 20kBTe. Γ-point Brillouin-zone sampling was
used.

IV. RESULTS AND DISCUSSION

A. Comparison with other methods

Insight into the accuracy of the noninteracting free-energy
functionals is provided by two preliminary studies. First, we car-
ried out KSMD and OFMD calculations (no NQEs) with the same
LPP in local thermodynamic equilibrium at fixed, comparatively low
temperature,Te�Ti� 2 kK for three densities, rs� 1.05, 1.10, and 1.25.
The results for the modern LKTF54,70 and VT84F53 GGA nonin-
teracting functionals and finite-temperature Thomas–Fermi func-
tional (TTF)52 are shown in Table I. It can be seen that LKTF is
somewhat better in terms of isothermal pressure error than VT84F or

TTF, in the sense that the range of LKTF fractional error is smallest of
the three for the density range considered. It is also important to note
that the TTF error is deceptive in that TTF does not give bound
crystals in the static lattice limit and has other failures even for
hydrogen.53

Next, we investigated the behavior of the three noninteracting
functionals (LKTF, VT84F, and TTF) for the two-temperature
situation, again with OFMD calculations compared with KSMD
calculations (no NQEs), all using the same LPP. The two-
temperature warm dense hydrogen had electron temperature Te �
20 kK and bulk density ρ � 1 g/cm3, with 300 kK ≤ Ti ≤ 20 kK.
Comparisons of the electronic pressure are shown in Fig. 2. The gross
failure of TF is now obvious, as is the improvement of LKTF com-
pared with VT84F. However, as in the preceding case, LKTF again
underestimates the electronic pressure relative to the KSMD values.
As before, the underestimate is smooth and weakly varying. It de-
creases slowly and evenly with increasing ion temperature, from
about 19% at Ti � 300 K to about 11% at Ti � 20 kK.

On the basis of these two comparisons, we make the quite
plausible assumption that this smooth offset is inconsequential for

TABLE I. Comparison of conventional KSMD andOFMD electronic pressures (GPa)
at equilibrium, Te � Ti � 2 kK. The fractional error for OFMD with respect to the KSMD
pressure is shown in parentheses. The KSDT XC free-energy functional was used in all
cases.

rs P (KSMD) P (LKTF) P (VT84F) P (TTF)

1.05 1558.7 1453.0(0.068) 1401.7(0.101) 1636.1(−0.049)
1.10 1146.9 1061.0(0.075) 1012.2(0.117) 1224.3(−0.067)
1.25 470.9 416.8(0.115) 377.3(0.199) 536.4(−0.139)

FIG. 2. Comparisons of the electronic pressure calculated from OFMD simulations
with the different noninteracting free-energy functionals (namely, TTF,52 VT84F,53

and LKTF54,70) vs KSMD simulations, all with the same LPP. Te � 20 kK and ρ � 1
g/cm3.
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reasonable estimates of NQEs. Therefore, for the remainder of this
study, we use LKTF for the OFMD and PI-OFMD calculations.

Next, we compare the PI-OFMD quantum nuclear corrections
to the hydrogen total free energy and pressure with corresponding
results from coupled electron–ion Monte Carlo (CEIMC) calcula-
tions81 in the case of thermodynamic equilibrium states. Specifically,
we considered Ti � Te � 2000 K and three densities corresponding to
ionic Wigner–Seitz radii rs � 1.05 bohrs, 1.10 bohrs, and 1.25 bohrs.
(Note that since the system is hydrogen, the ionic and electronic
Wigner–Seitz radii are identical.) As shown in Table II, the quantum
nuclear corrections from PI-OFMD are substantially larger than
those from CEIMC for both the total free energy and pressure.

In the CEIMC calculation,81 in order to assess NQEs on the
thermodynamic properties, path integralMonte Carlowas performed
for the protons on the potential-energy surface defined by the zero-
temperature reptation quantum Monte Carlo method. In this work,
the quantum protons are driven by the on-the-fly potential obtained
from OFDFT calculations of electrons at nonzero temperatures.
Different treatments of electronic structure lead to the much lower
NQE estimates from CEIMC. It is important to note, however, that
both sets of NQE corrections (to both the free energy and pressure)
increase with density; see Table II. This accords with basic expec-
tations about NQEs (specifically, a sort of excluded-volume effect)
and reinforces the conclusion that the two schemes are describing
how the same nuclear effect is manifested in very different physical
circumstances. See below for further discussion regarding that effect
in the equation of state.

B. Radial distribution function

To assist in understanding NQEs on the structure of two-
temperature hydrogen, we calculated the radial distribution func-
tions (RDFs) from PI-OFMD and compared these with their classical
counterpart OFMD results. In PIMD, the RDF can be calculated via

g(r) � 〈 ni(r)
4πni,0r2Δr〉PI, (14)

where ni(r) is the mean number of atoms in a shell of width Δr at
distance r, ni,0 is the mean atom density, and 〈〉PI is the PI ensemble
average.

Figure 3 shows the RDF of two-temperature hydrogen at the ion
temperature and density state points considered in this study when
Te � 20 kK. For the three cases that correspond to α � 0.167, the RDFs
from OFMD and PI-OFMD calculations completely overlap one
another. When the parameter α is increased to 0.373, the first RDF
peak is broadened by the inclusion of NQEs. The degree of broad-
ening is similar in the three cases.

When α is raised to 0.681, however, the RDFs from PI-OFMD
calculations exhibit distinctly different behaviors from those from
OFMD calculations. The structure delivered by the OFMD is the
cubic solid from which the simulation started, with a well-defined
rather narrow first peak, followed by a pair of structured peaks for all
three densities. For all three densities, the PI-OFMD results lower the
first peak and broaden it slightly, while softening and smoothing the

TABLE II. NQE corrections to the total free energy and pressure of hydrogen from CEIMC and PI-OFMD calculations at an ion
temperature Ti � 2000 K. In PI-OFMD, Te � 2000 K, while in CEIMC, the NQE corrections are obtained based on the zero-
temperature potential-energy surface.81 The total energy includes the ionic kinetic energy and electronic free energy, Ftot � ϵkin
+ ϵpot, as defined by Eqs. (5) and (6), respectively. Corrections are defined asΔF� (Ftot− Ftot,classical)/N andΔP� P− Pclassical,
respectively. The ratio of the pressure corrections to the pressure obtained classically,ΔP/P, is presented. Statistical errors are
reported in parentheses as the uncertainty in the last digit.

rs α ΔF (mhartree/atom) ΔP (GPa) ΔP/P (%)

CEIMCa 1.05 0.350 4.0(7) 7(3) 0.4
1.10 0.334 3.8(3) 9(1) 0.7
1.25 0.294 2.8(5) 5(1) 1.0

PI-OFMD 1.05 0.350 7.0(7) 27.7(4) 1.9
1.10 0.334 6.3(7) 23.6(3) 2.2
1.25 0.294 4.1(6) 11.1(2) 2.5

aData from Ref. 81.

FIG. 3.Comparisons of the radial distribution function from OFMD and PI-OFMD for
two-temperature hydrogen at different ion temperatures and densities. The pa-
rameter α is 0.167, 0.373, and 0.681 from the top to bottom panels. The electron
temperature is 20 kK.
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subsequent pair of peaks into a somewhat structured single peak. At
the highest density, a third peak is pushed into the picture, again
modestly broadened and lowered by NQEs relative to the OFMD
result. The RDF behavior confirms that in quantum simulations, the
protons vibrate in a larger volume around their equilibrium positions
than in the classical case. This enhances the anharmonic vibrational
effects, thereby lowering the melting temperature.42,82 Since the RDF
is directly related (by Fourier transformation) to the structure factor,
which is a key quantity in interpreting x-ray scatteringmeasurements,
NQEs on RDF will inevitably affect the x-ray scattering properties of
light-atom matter such as hydrogen under high pressures and at low
temperatures.40

That said, there is a question: Why does the atomic solid appear
in theOFMDcalculations for α� 0.681? Someone unfamiliar with the
LPP utilized heremight speculate that it is implicated. However, it was
shown in Ref. 52 that it is realistic under a rather large range of state
conditions. To the extent that one trusts a hard (small-core) but
ground-state PAW for extreme state conditions, the validity of the
LPP has also been confirmed by comparison of KSMD using LPP
results with results from KSMD using PAW; see Refs. 52 and 53. The
occurrence of the atomic solid is thus diagnosed as arising from the
orbital-free approximate noninteracting free-energy functional. This
diagnosis is confirmed by direct comparison of KSMD and OFMD
calculations with the same LPP. We used Te � 20 kK for ρ � 1 g/cm3,
Ti � 300 K, and for ρ � 5 g/cm3, Ti � 879 K, i.e., α � 0.681. We also
carried out KSMD calculations with standard Quantum-Espresso
PAWdata sets for the same conditions. Figure 4 shows clearly that the
atomic solid is a consequence of the orbital-free approximate
functional. The KSMDRDFs (which are identical for LPP or PAWon

the scale of the figure) are obviously liquid in character, while the
OFMD RDFs show the characteristic solid peak sequence.

Despite these detailed differences, the RDFs provide an un-
mistakable semiquantitative criterion for the onset of meaningful
NQEs. In Fig. 5, we display the ratio of the first peak height from
OFMD (classical nuclei) to that for PI-OFMD as a function of the
parameter α. What is qualitatively and at least roughly quantitatively
indicated in this plot is that α ≈ 0.30 is a lower bound for meaningful
NQEs. Independent calculations by some of us47 on the insulator–
metal transition in hydrogen and deuterium corroborate this inter-
pretation. In those other calculations, PIMD driven by accurate
conventional KS-DFT calculations and by OFDFT also exhibit no-
table NQEs above α ≈ 0.30. Moreover, because of the ionic-mass
dependence of α (smaller values for heavier ions means smaller
NQEs), we suggest that α≈ 0.30 as a semiquantitative lower bound for
meaningful NQEs is universal for systems irrespective of different
ionic compositions, not just for hydrogen. Obviously, this requires
further investigation. The accuracy limitations of the LKTF functional
used here do not alter these deductions about a roughly universal α.

We can examine the differing electron temperature effects on
ionic structural properties by comparing the proton RDFs at the three
electron temperatures Te � 20 kK, 50 kK, and 100 kK. Since the RDFs
corresponding to the parameter α � 0.167 are indistinguishable, we
present in Figs. 6 and 7 comparisons of the RDFs only for α � 0.373
and 0.681, respectively. For α � 0.373 at the higher density, 5 g/cm3,
there are only slight RDF changes as Te is increased from 20 kK to
100 kK. Themain effect is fromNQEs, which, irrespective ofTe, lower
and broaden the first RDFpeakmodestly. At 1 g/cm3, the height of the
first peak increases just enough to be perceptible asTe grows to 100 kK
but still the stronger influence is that of NQEs. For α � 0.681 (Fig. 7),
the outcome is similar but more pronounced. Only slight changes in
the RDF appear over the entireTe range, whereas theNQEs are strong
enough to wash out the crystalline order that OFMD produces. In
short, because even the smallest out-of-equilibrium temperature ratio
is very large, Te/Ti ≥ 6.8, the calculated RDFs are insensitive to growth
in that out-of-equilibrium ratio.

FIG. 4. Comparisons of RDFs of two-temperature hydrogen obtained from KSMD
(LPP and PAW) and OFMD calculations at the state points (5 g/cm3, 879 K) and
(1 g/cm3, 300 K), corresponding to dimensionless size α � 0.681, for Te � 20 kK.

FIG. 5.Ratio of the first maximum in the RDF for the quantum and classical cases as
a function of α.
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To obtain further insight into NQEs, it is helpful to consider the
spatial spread of the discretized path. A useful measure is the radius of
gyration of the ith polymer. In PIMD, this is defined as

Rg
i �

������������
1
P �

P

s�1
r(s)i − rci
∣∣∣∣∣ ∣∣∣∣∣

√√
, (15)

where rci is the centroid of the ith polymer. Figure 8 shows changes in
the radius-of-gyration distribution of the two-temperature hydrogen
at Te � 20 kK. Given a fixed density, the mean radius of gyration
increases as the ion temperature is decreased, with great broadening at
the lowest temperatures. This distinct temperature effect clearly
shows the nature of quantum delocalization of protons; i.e., the lower
temperature results in a larger quantum “size” and stronger relative
quantum fluctuation of particles. This behavior is also the reason why
the RDFs from quantum simulations are quite different from the
classical RDFs.

C. Equation of state

The ionic, electronic, and total pressures calculated fromOFMD
and PI-OFMD simulations are summarized in Table III. The most
obvious outcome is that the ionic pressure from quantum ions (PI-
OFMD calculations) is significantly larger than from classical ions
(OFMD calculations). The disparity ΔPi/Pi grows as the ratio of
quantum proton size to the mean interproton distance, i.e., the pa-
rameter α, is increased. This unsurprising behavior is a consequence
of the inclusion in the PI-OFMD simulations of the quantum kinetic

FIG. 6. Comparisons of the RDFs of two-temperature hydrogen at two state points
(5 g/cm3, 2929 K) and (1 g/cm3, 1000 K), corresponding to dimensionless size
α � 0.373, for Te � 20 kK, 50 kK, and 100 kK. Both OFMD and PI-OFMD results are
shown.

FIG. 7. As in Fig. 6 for the state points (5 g/cm3, 879 K) and (1 g/cm3, 300 K),
α � 0.681.

FIG. 8. Distribution of the radius of gyration of the two-temperature hydrogen at
Te � 20 kK and (from top to bottom) densities 1 g/cm3, 2.5 g/cm3, and 5 g/cm3.
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energy contribution to the ionic pressure (via the harmonic inter-
actions between neighboring beads in the classical isomorphic
polymer).

Observe that for a fixed α value,ΔPi/Pi stays nearly constant with
respect to Te, with only small variations. ΔPi/Pi thus depends on the
degree of quantum delocalization of protons rather than on the
specific ion temperature and density conditions. The only exception is
the case of small dimensionless size, α � 0.167. Even for this, variation
of Te has almost no impact on ionic pressures. These behaviors are a
consequence of the definition of Pclassical

i as the ideal gas pressure for
temperature equal to the MD-run average of the instantaneous
thermostatted ionic temperature. For diverse technical reasons, that
average temperature may differ slightly from the nominal (specified)
ionic temperature. As a result, the ideal gas pressures calculated with
the average and the nominal ionic temperatures may differ slightly.
Close values of the average and nominal Ti, or, equivalently, close
values of Pclassical

i calculated with those two temperatures, indicate the
thermostat quality. In our calculations, the difference betweenPclassical

i
calculated fromMDdirectly and the ideal gas pressure calculatedwith
the nominal Ti does not exceed 2%. We note that for α � 0.167, there
are a few anomalous cases with negative pressure increments. Those

result from statistical fluctuations related to the closeness of ionic
pressures obtained from OFMD and PI-OFMD simulations.

More interestingly, the electronic pressures from quantum
simulations are larger than those from classical treatments of the
protons. This increase of Pe by NQEs is below 5% at the temperature
and density conditions considered here. This behavior should be
attributed to the alteration of the electron density for quantum
simulations of protons relative to their classical treatment. We note
that the ionic configuration is significantly affected by NQEs, as
shown in Fig. 3. This corresponds to a different external potential for
the electrons to which the electron density must adapt. Inclusion of
NQEs gives the protons a larger effective size than in the classical case,
so the effective volume available for electrons is reduced and the
electronic pressure goes up.

While the ionic pressure is dramatically raised by NQEs, the
increment of total pressure with quantum protons is below 10% at the
temperature and density conditions in this study. Nevertheless, the
quantum nuclear corrections to the total pressure of two-temperature
warm dense hydrogen are not negligible, and hence they should be
considered when highly accurate equation-of-state data are required,
especially for low-ion-temperature and high-density conditions.

TABLE III. Electronic, ionic, and total pressures of two-temperature hydrogen for various densities and electronic and ionic temperatures (Te, Ti) from OFMD and PI-OFMD
calculations. Pe, Pi, and P are the electronic pressure, ionic pressure, and total pressure from PI-OFMD calculations respectively. Pclassical

e , Pclassical
i , and Pclassical are their OFMD

counterparts with classical ions. The noninteracting free-energy functional LKTF is used. The dependence on the dimensionless size parameter α is also shown.

Te (kK) α
ρ

(g/cm3) Ti (K)
Pclassical
e
(GPa) Pe (GPa) ΔPe/Pe (%)

Pclassical
i
(GPa) Pi (GPa) ΔPi/Pi (%)

Pclassical

(GPa) P (GPa) ΔP/P (%)

20 0.167 1.0 5 000 198.99 199.15 0.08 40.68 40.43 −0.60 239.67 239.58 −0.04
20 0.167 2.5 9 204 1815.79 1819.70 0.21 194.40 200.18 2.97 2010.20 2019.88 0.48
20 0.167 5.0 14 610 7389.67 7408.13 0.25 589.51 626.58 6.29 7979.17 8034.71 0.70
20 0.373 1.0 1 000 174.56 178.68 2.36 8.31 12.15 46.21 182.86 190.83 4.36
20 0.373 2.5 1 845 1725.10 1740.63 0.90 38.77 56.40 45.47 1763.87 1797.03 1.88
20 0.373 5.0 2 929 7151.90 7196.04 0.62 117.03 174.99 49.53 7268.92 7371.03 1.40
20 0.681 1.0 300 164.42 172.17 4.71 2.46 9.08 269.10 166.88 181.25 8.61
20 0.681 2.5 553 1689.21 1717.70 1.69 11.46 42.49 270.77 1700.67 1760.19 3.50
20 0.681 5.0 879 7060.90 7135.82 1.06 36.30 129.85 257.71 7097.19 7265.67 2.37

50 0.167 1.0 5 000 258.40 259.23 0.32 41.51 42.52 2.43 299.91 301.75 0.61
50 0.167 2.5 9 204 1921.09 1924.74 0.19 184.84 188.11 1.77 2105.93 2112.84 0.33
50 0.167 5.0 14 610 7557.53 7572.51 0.20 598.92 618.34 3.24 8156.45 8190.84 0.42
50 0.373 1.0 1 000 235.36 239.65 1.82 8.06 12.33 52.98 243.42 251.98 3.52
50 0.373 2.5 1 845 1836.57 1851.04 0.79 38.59 55.28 43.25 1875.16 1906.33 1.66
50 0.373 5.0 2 929 7322.82 7362.95 0.55 119.67 172.68 44.30 7442.49 7535.63 1.25
50 0.681 1.0 300 226.57 233.68 3.14 2.42 9.26 282.64 229.00 242.94 6.09
50 0.681 2.5 553 1801.53 1829.30 1.54 11.22 42.39 277.81 1812.76 1871.69 3.25
50 0.681 5.0 879 7230.73 7304.81 1.02 36.56 130.00 255.58 7267.29 7434.81 2.31

100 0.167 1.0 5 000 466.02 466.47 0.10 41.08 41.89 1.97 507.10 508.36 0.25
100 0.167 2.5 9 204 2248.03 2248.48 0.02 189.55 187.94 −0.85 2437.58 2436.41 −0.05
100 0.167 5.0 14 610 8027.68 8041.09 0.17 593.45 618.83 4.28 8621.13 8659.92 0.45
100 0.373 1.0 1 000 448.47 451.61 0.70 8.41 12.66 50.54 456.88 464.27 1.62
100 0.373 2.5 1 845 2166.42 2181.17 0.68 37.46 55.76 48.85 2203.88 2236.93 1.50
100 0.373 5.0 2 929 7797.50 7839.59 0.54 118.42 175.35 48.07 7915.92 8014.94 1.25
100 0.681 1.0 300 441.51 447.02 1.25 2.41 9.76 304.98 443.92 456.78 2.90
100 0.681 2.5 553 2135.69 2160.99 1.18 11.20 42.68 281.07 2146.89 2203.67 2.64
100 0.681 5.0 879 7708.87 7781.02 0.94 36.15 130.24 260.28 7745.02 7911.26 2.15
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The quantumnuclear corrections to the free energy are shown in
Fig. 9. First, note that, similar to the pressure corrections, the differing
electron temperature has almost no impact on free-energy correc-
tions. More importantly, the free-energy corrections for protons
increase approximately linearly with increasing density for all three
cases,α� 0.167, 0.373, and 0.681. Therefore, the corrections to the free
energy can be estimated in the entire nonequilibrium process through
extrapolations from those somewhat limited PIMD simulations.

As remarked at the outset, in this study, we used the TRPMD68

method to sample the ionic configuration space of the isomorphic
polymer system rather than the primitive algorithm.61 For clarity
about methodological effects, in Table IV, we show the difference
between the electronic pressures obtained from the primitive algo-
rithm and from TRPMD for the case ρ � 1 g/cm3. For the simulations
with the number of beads P � 1, both algorithms yield almost the
same results. But with the number of beadsP � 16, we find that the

electronic pressure is overestimated significantly by the primitive
algorithm as compared with TRPMD results. This is consistent with
the known sampling adequacy of ionic configurations for the
primitive algorithm.67,83 The TRPMD technique can provide a so-
lution to this problem with rapid, proper canonical sampling. This is
simply a reminder of the effects of the choice of algorithm for the
study of NQEs on equation-of-state or other thermodynamic
properties of WDM.

V. CONCLUSION

In summary, we have performed PI-OFMD simulations for two-
temperature warmdense hydrogen and have systematically estimated
nuclear quantum effects upon its structure and thermodynamic
properties. The use of OFDFT with PIMD has provided a less
computationally intensive option than conventional KSMD for
studying two-temperature effects. The best OFDFT noninteracting
free-energy functional currently available (LKTF) combined with the
LDA finite-temperature XC functional improves upon the ground-
state approximation by the inclusion of an explicit T dependence. The
combination gives electronic pressures that reasonably reproduce the
trends in the KSDFT calculations but are offset. However, the offset is
substantially smaller than with other noninteracting free-energy
functionals, especially TF, although further improvement in Fs[n]
is still needed.

We have identified an unexpected limitation of LKTF, namely,
the appearance of spurious solid-like character in the RDF at the
largestα� 0.681. Exploration of the cause is a consideration that needs
to be taken into account in the development of a better Fs[n]
approximation.

NQEs calculated with this methodology are substantially larger
than those from the CEIMC methodology. We have suggested the
very different (reversed) two-temperature relationships in the two
methods as the most obvious plausible source of the discrepancy. The
use in CEIMC of clamped nuclei to generate the Te � 0 electronic
potential surface would in principle amplify the difference. That
proposed identification is a matter for further methodological ex-
ploration. What is learned unequivocally from the two very different
sets of circumstances and methods is the ubiquitous importance of
NQEs for the equation of state.

Inclusion of ionic quantum effects alters the ionic RDFs per-
ceptibly when the parameter α (defined as the ratio of the ionic
thermal de Broglie wavelength to the mean interionic distance) is as
large or larger than about 0.30. This interpretation is confirmed by
examination of first-peak heights in the RDFs.

A significant physical finding is that variation of Te over a large
range has only small to negligible effects on the ionic RDFs in the
range of densities considered. This may be an indication of non-
Born–Oppenheimer effects. Another possible reason is that the
electronic structure does not change much at Te lower than the Fermi
temperature. This is another issue that needs further investigation.

Importantly, NQEs raise both the ionic and electronic pressures.
This is because quantum protons have a larger effective size than
classical point ions. When highly accurate equation-of-state data for
warm dense hydrogen are required, NQEs should not be ignored,
especially under conditions of relatively low ionic temperature and
high density. The extent to which this is true of other light elements
needs to be ascertained on a case-by-case basis.

FIG. 9. Quantum nuclear corrections to the free energy per hydrogen atom at the
state points of ion temperature and density used. Results at Te � 20 kK, 50 kK, and
100 kK are presented for comparison.

TABLE IV. Comparisons of the electronic pressurePe obtained from the primitive PIMD
algorithm61 and TRPMD68 for hydrogen at ρ � 1 g/cm3. The results of simulations with
classical protons are also presented by setting the bead number P � 1. Here, the
noninteracting free-energy functional VT84F53 and the finite-temperature XC functional
KSDT71 are used. The standard deviation is shown in parentheses.

Te (kK) Ti (K) Pclassical
e (GPa) Pe (GPa) ΔP/P (%)

Primitive 20 300 136.8(1.0) 166.5(3.1) 21.7
20 1000 146.4(1.3) 167.0(2.0) 14.1
20 5000 169.5(1.0) 184.0(3.2) 8.6

TRPMD 20 300 137.6(0.2) 144.6(0.3) 5.1
20 1000 146.3(0.5) 150.4(0.7) 2.8
20 5000 168.2(2.0) 169.2(2.1) 0.6
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In addition, we have found that the use of the primitive algo-
rithm of PIMD leads to an overestimation of electronic pressures of
two-temperature warm dense hydrogen. Any attempt to use this
primitive algorithm as a computational economy is therefore ill-
advised.
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7A. L. Kritcher, T. Döppner, D. Swift et al., “Probingmatter at Gbar pressures at the
NIF,” High Energy Density Phys. 10, 27 (2014).
8R. Nora, W. Theobald, R. Betti et al., “Gigabar spherical shock generation on the
OMEGA laser,” Phys. Rev. Lett. 114, 045001 (2015).
9P. Sperling, E. J. Gamboa, H. J. Lee et al., “Free-electron x-ray laser measurements
of collisional-damped plasmons in isochorically heated warm dense matter,” Phys.
Rev. Lett. 115, 115001 (2015).
10M. S. Murillo and M. W. C. Dharma-wardana, “Temperature relaxation in hot
dense hydrogen,” Phys. Rev. Lett. 100, 205005 (2008).
11Q. Ma, J. Dai, D. Kang et al., “Molecular dynamics simulation of electroneion
temperature relaxation in dense hydrogen: A scheme of truncated Coulomb
potential,” High Energy Density Phys. 13, 34 (2014).
12Q.Ma, J. Dai, D. Kang et al., “Extremely low electron-ion temperature relaxation
rates in warm dense hydrogen: Interplay between quantum electrons and coupled
ions,” Phys. Rev. Lett. 122, 015001 (2019).
13Q. Zeng and J. Dai, “Structural transition dynamics of the formation of warm
dense gold: From an atomic scale view,” Sci. China-Phys. Mech. Astron. 63, 263011
(2020).
14S. I. Anisimov, B. L. Kapeliovich, and T. L. Perel’man, “Electron emission from
metal sufraces exposed to ultrashort laser pulses,” Sov. Phys. JETP 39, 375 (1974).
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